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Non-Gaussian behavior of low-order moments in fully developed turbulence

Samuel I. Vainshtein
Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois 60637

~Received 21 November 1996!

An experimental study is made of velocity increment statistics in turbulent pipe flow. Special attention is
given to positive and negative parts of the increments, corresponding to low-order-moment statistics. In
particular, we study the zeroth moment of both positive and negative parts of the distribution, i.e., the box
counting for each part separately: that makes it possible to calculate the Kolmogorov capacity. Low-order-
moment statistics corresponds to low and moderate velocity increments, which are described by a probability
density-function for, say, less than three standard deviations. The distributions prove to deviate noticeable from
Gaussian or from some other simple distribution. This implies a deviation from scaling law for the structure
functions, suggested by the Kolmogorov hypotheses.@S1063-651X~97!01107-0#

PACS number~s!: 47.27.Ak, 47.27.Jv
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I. INTRODUCTION

Statistical properties of turbulence have been studied f
long time. In particular, Kolmogorov suggested a scaling l
for structure functions, and that is now called K41 theory@1#.
As it was understood later, the theory is valid for relative
simple statistics. Roughly speaking, the predicted sca
corresponds to a nonintermittent system, i.e., the probab
distributions do not deviate strongly from the Gaussian d
tribution.

On the other hand, intermittency of turbulence does c
respond to a deviation from the Gaussian distribution.
deed, the refined Kolmogorov hypotheses@2# suggest that the
probability distribution differs from the Gaussian on
Strictly speaking, the Kolmogorov law@3#, found in 1941,
implies that the probability distribution function~PDF! is
asymmetric and therefore cannot be Gaussian. However,
deviation has been considered to be small.

Naturally, the deviation from Gaussian statistics manife
itself mainly in high moments. Indeed, many studies~see,
e.g.,@4,5#! show that if there is an anomalous scaling for t
structure functions, then it would be found in the high m
ments. The same is true for the generalized dimensionsDq
corresponding toqth moments. Experimental data pers
tently showed that the dimensions are trivial for the lo
moments; for instance, the Kolmogorov capacityD051 ~if
dealing with a one-dimensional cut of a process! and the
deviation from unity appears only in higher moments.

Recent studies, however, suggest that the deviation
already be found in the low moments@6#. This is especially
true if one considers positive and negative parts of the
locity increments separately. They reveal anasymmetryof
statistics. As the high moments usually have poor conv
gence and they can be trusted, say, up to the sixth mom
only @7#, it appears that the study of low moments statist
could prove to be useful. Low-order-moment-statistics cor
sponds to the PDF, constructed for low and moderate ve
ity increments, and therefore the study of this kind of PD
provides supplemental information about the deviation fr
the Gaussian process.

The rest of the paper is organized as follows. We desc
in Sec. II what the Gaussian distribution would predict f
561063-651X/97/56~1!/447~15!/$10.00
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the statistics of positive and negative parts of the veloc
increments and for low-order statistics. A comparison
these predictions with experimental structure functions of
roth order is given in Sec. III. Section IV deals with bo
counting, or the Kolmogorov capacity, of positive and neg
tive parts of the velocity increments. Asymmetry proves
be an obstacle for the construction of a PDF with all t
needed properties. For example, in Sec. V an attempt is m
to construct a Gaussian-like PDF; this proves to be imp
sible, at least for the simplest case. Probability distributio
for relatively low velocity increments, i.e., below three sta
dard deviations, are presented in Sec. VI. Finally, the m
conclusions are given in Sec. VII.

II. MULTIVARIATE GAUSSIAN DISTRIBUTION

We will use the two-point Gaussian distribution, the pro
ability density for the velocity to assume the valuesv and
v8, at the pointsx andx8,

P2~v,v8ux,x8!

5
1

d2
expH 2

K~0!v222K~r !vv81K~0!v82

2@K~0!22K~r !2# J , ~1!

whereK(r ) is an arbitrary velocity correlation function,r
5x82x, and d252p@K(0)22K(r )2#1/2. For an n-point
PDF,

Pn~v1 ,v2 ,...ux1 ,x2 ,...!

5
1

dn
expH 2(

iÞ j

n K~0!v i
222K~r i j !v iv j1K~0!v j

2

2@K~0!22K~r i j !
2# J ,

wheredn is a normalization constant andr i j is the distance
between thei th and j th points.

We write Eq.~1! in a different form, which more appro
priate for calculating the structure functions:
447 © 1997 The American Physical Society
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448 56SAMUEL I. VAINSHTEIN
P2~v,v8ux,x8!5
1

d2
expH 2

u2

2s~r !2
2

~v81u/2!2

2@K~0!2s~r !2/4#J ,
~2!

where u5v2v8 and s(r )252@K(0)2K(r )#. The pre-
factor can be expressed throughs(r ) as well, d2
52ps(r )@K(0)s(r )2/4#1/2.

The structure functions are defined as integer moment
the velocity increments,

Ŝn~r !5^@v~x1r !2v~x!#n&5^Dv r
n&. ~3!

Therefore, integrating Eq.~2! over allv8, we get the PDF for
u, i.e., for the increments,

P~uux,x8!5
1

A2ps~r !
e2u2/2s~r !2. ~4!

Obviously, the odd moments vanish,Ŝn(r )50, n52m
11, m is an integer, and

Ŝn~r !5G~n!s~r !n, ~5!

wheren52m andG(n) is Gaussian constant. In particula
G(2m)5(2m21)!!5133•••(2m21).

More often, however, the so-called generalized struct
functions are used,

Sq~r !5^uv~x1r !2v~x!uq&, ~6!

for arbitraryq. Then, using Eq.~4!, for the Gaussian proces

Sq~r !5G~q!s~r !q. ~7!

If, in addition, all structure functions exhibit scaling pro
erties, an assumption we are making in this paper, then
generalized structure functions would behave like

Sq~r !;r zq, ~8!

which corresponds to the assumption thats(r ) should scale
like

s~r !;r p.

Under these assumptions, the Kolmogorov hypotheses
be recovered for the generalized structure functions. Ind
using Eq.~7!,

zq5qp. ~9!

There are two ways of findingp. One is to consider dimen
sional arguments, that is, to write the only dimensional co
bination, as in@1#,

^uDv r u&5S1~r !;~er !1/3, ~10!

where e is the energy dissipation rate. In that case,p5 1
3.

Another way, with the same result, is to notice theexperi-
mentalcloseness of the exponents forS3(r ) and Ŝ3(r ) @8#
and to invoke the45 Kolmogorov law@3#,

Ŝ3~r !52 4
5 er . ~11!
of

e
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-

It follows that z351 andp5 1
3 from ~9!.

This scaling indeed corresponds to the Kolmogorov h
potheses K41@1#,

Sq~r !;~er !q/3, ~12!

although they are usually written for the structure functio
rather than for generalized structure functions, namely,

Ŝn~r !;r jn,

where

jn5
n

3
. ~13!

As the structure functions coincide with the general struct
functions for even~integer! q, we simply havez2m5j2m . In
addition, the expression for the structure function, with e
ponents like Eq.~13!, can be roughly used for the odd mo
ments as well@except, of course, forq51, becausê v(x
1r )2v(x)&50#. The point here is that Eq.~13! is satisfied
for q53 because of the Kolmogorov law and, according
experimental data@8,4~d!#, the higher-order odd exponen
also roughly obey the Kolmogorov hypotheses~13!.

The mere existence of the Kolmogorov law~11! and non-
vanishing odd moments means that the PDF is not Gauss
but is asymmetric. We will be able to make more quanti
tive statements by studying positive and negative parts
velocity increments. Namely, we consider, following@9#,

Sq
6~r !5^$ 1

2 @ uDv r~x!u6Dv r~x!#%q&. ~14!

Obviously,@ uDv r(x)u6Dv r(x)#/2 are non-negative and rep
resent positive parts ofDv r(x) for the plus and the absolut
value of negative parts for the minus.

One of the quantities that measures the deviation fr
Gaussian process is the flatness factor

F4~r !5
S4~r !

S2~r !2
. ~15!

For the Gaussian process,F4 is independent ofr and equal
to G(4)/G(2)253, by Eq. ~7!. Obviously, in that case
S2(r )

65S2(r )/2, S4(r )
65S4(r )/2, and therefore

F4
65

S4
6~r !

@S2
6~r !#2

56. ~16!

Much attention will be devoted to extremely lowq, in
particular,q50. It easy to see from Eq.~4! that

S0
6~0!50, S0

6~rÞ0!5
1

2
~17!

for the Gaussian process. Note that the theoretical value
S0(r ) are

S0~0!50, S0~r.0!51, ~18!

which are valid not only for the Gaussian process, but
any PDF, unless it containsd(Dv r).

The two distributions
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56 449NON-GAUSSIAN BEHAVIOR OF LOW-ORDER MOMENTS . . .
D1~x!5 1
2 @ uDv r0~x!u1Dv r0~x!#

and

D2~x!5 1
2 @ uDv r0~x!u2Dv r0~x!#

deserve special attention. Herer 0 corresponds to the smalle
separation between two data points in any particular exp
ment. The distributions correspond to the derivativev(x)
5]xv(x) or to the positive and negative parts of veloc
gradient distribution. To be more specific,v(x)5D1(x)
2D2(x) and uv(x)u5D1(x)1D2(x). As the sets of non-
zero values ofD1(x) andD2(x) do not intersect, all mo-
ments are constructed via the moments ofD1(x) and
D2(x) distributions. For example, the generalized dime
sionsDq are obtained from the expression

Bq~r !5^v~r !q&;r2~12Dq!~q21!;Cq
1r2~12Dq

1
!~q21!

1Cq
2r2~12Dq

2
!~q21!, ~19!

where the angular brackets denote the global average
the local mean,

^v~r !q&5

(
i

v i~r !q

N
,

v i~r !5
1

r Exi
xi1r

u]xv~x!udx.

HereN51/r is the number of boxes of sizer into which the
volumeV51 has been divided@10,11#. On the other hand
v i(r )5D i

1(r )1D i
2(r ), where

D i
6~r !5

1

r Exi
xi1r

D~x!6dx,

and thus expression~19! is recovered@9#.
As mentioned in the Introduction, the Kolmogorov capa

ity D051 for turbulent processes. In fact, this is a con
quence of thecontinuityof the velocity field, which in turn is
provided by a finite viscosity.

The situation is quite different withD1(x) and D2(x)
distributions. They are discontinuous and therefore migh
nontrivial. In addition to that, ifD0

1,1 or D0
2,1, then all

higher-order dimensions are nontrivial. Indeed, according
the theorem@10#, Dq.0<D0 . Therefore, the Kolmogorov
capacity of plus-minus distributions might contain som
deep properties of the asymmetry of turbulence.

Related properties might contain the two-point corre
tions such aŝ uv(x1r )v(x)uq/2& @11#. We are interested in
lowest momentq50. If v(x) is a Gaussian process then
derivativev(x) is Gaussian as well. Then, to calculate the
correlations, we use Eq.~1!, with the correlation function
corresponding tov(x), i.e.,

K~r !5^v~x1r !v~x!&,

rather than to the velocity correlations. In particular, we
interested in constructingKq

1(r )5^@D1(x1r )D1(x)#q/2&
ri-

-

er

-
-

e

to

-

e

e

and Kq
2(r )5^@D2(x1r )D2(x)#q/2& correlations. For the

Gaussian process, we have, forq50,

K0
1~r !5K0

2~r !5^@D1~x1r !D1~x!#0&

5^@D2~x1r !D2~x!#0&

5E
0

`

dv8E
0

`

dv P2~v,v8ux,x1r !

5E
0

`

dxE
z

`

dy
1

2p
e2~x21y2!/2, ~20!

where

z52x
K~r !

@K~0!22K~r !2#1/2
.

After quite straightforward calculations, we get

K0
1~r !5K0

2~r !5^@D2~x1r !D2~x!#0&

5
1

4
1

1

2p
arctan@a~r !#, ~21!

a~r !5
K~r !

@K~0!22K~r !2#1/2
.

For r50, a→` and the correlations~20! reach their maxi-
mum value ~as they should for any correlation function!
equal to 1

2. For r→`, a→0 and these correlations asym
totically approach1

4. Finally, note that^uv(x1r )v(x)u0&
[1 for the Gaussian~and, practically, for any other continu
ous! distribution.

Return to the definition of generalized dimensions, as
Eq. ~19!. In particular, we are interested in box countin
which gives a generalized dimension forq50. Consider the
box counting for plus-minus distributions separate
namely,

B0
6~r !5^D6~r !0&. ~22!

It is clear that for the Gaussian process~as, in fact, for any
other, with a symmetric PDF!,

B0
6~1!5 1

2 . ~23!

For r5r 052, one has to consider the two-point distributio
~1!. Then

B0
6~r 0!512E

0

`

dv8E
0

`

dv P2~v,v8ux,x1r 0!, ~24!

and using Eqs.~20! and ~21!,

B0
6~r 0!5

3

4
2

1

2p
arctan@a~r 0!#. ~25!

Thus expressions for box counting, if each box conta
only two points, are expressed via finite integrals. Genera

B0
6~r !512E

0

`

dv1E
0

`

dv2•••Pn ,
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FIG. 1. Illustration of~a! an asymmetric ran-
dom process; the units are arbitrary, with a co
relation function similar to the experimental on
depicted in~b!. The latter corresponds toK(r )
5^v(x1r )v(x)&, wherev(x)5]xv(x), i.e., the
gradient of the measured velocity.
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wheren is chosen is such a way thatr5r n , andr n is the size
of the box. This expression is complicated and therefore
very useful. It is clear from it, though, that for a givenPn ,
the result of box counting is unambiguously defined; if t
process is multivariate Gaussian, then the PDF itself is
ambiguously defined by a given correlation function. The
fore, instead of using this complicated expression, we w
compare experimental box counting with that of the nume
cally simulated Gaussian process; the correlation func
needed to define the process we take from experiment.

III. MEASUREMENTS OF THE STRUCTURE FUNCTIONS
OF ZEROTH ORDER

All measurements reported in this paper were made
pipe flow of water at a bulk Reynolds number equal
230 000. The time sequence was treated as a spatial cu
invoking Taylor’s hypothesis. The Taylor microscale was
timated to be 0.88 cm and the Kolmogorov microscale w
estimated ash50.27 mm. All distances in the figures a
given in terms ofh. A data file with 23106 points was
processed.

We start with robust characteristics of the proce
namely, experimental measurements of the flatness. Fr
5r 0 ,

F4~r 0!55.91, ~26!

corresponding to moderate intermittency. Now, for the pl
minus distributions we have
ot

n-
-
ll
i-
n

a

by
-
s

,

-

F4
1~r 0!5

S4
1~r 0!

@S2~r 0!
1#2

59.94 ~27!

and

F4
2~r 0!5

S4
2~r 0!

@S2~r 0!
2#2

512.98. ~28!

These two values are bigger than the Gaussian one, 6@Eq.
~16!#, but the process is not Gaussian already, at least
cause the regular flatness is higher than 3@Eq. ~26!#. For any
symmetric PDF, not necessarily Gaussian, the values of
ness are expected to beF4

652F4(r 0)511.82. We see tha
the plus distribution is less intermittent, i.e., the flatness f
tor is less than 11.82, and the minus distribution is m
intermittent (F4

2.11.82). A weak deviation from the sym
metry would result in a small deviation of these two numb
from 11.82. The differenceF4

2(r 0)2F4
1(r 0) is, however,

about 26% of the value, which is quite substantial.
Figure 1~a! illustrates a numerical example of such a pr

cess. A realization of velocity increments at small lagv(x
1r 0)2v(x) or velocity gradientv(x) is plotted. The ex-
ample is constructed in such a way that^v&50. It is clear
that^v3&,0, i.e., the skewness is negative. It is also obvio
that the positive part ofv is less intermittent than the nega
tive one, i.e., the flatness of the negative part is bigger@cf.
Eqs. ~27! and ~28!#. This illustrates the ramp model sug
gested in@9#.
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FIG. 2. ~a! Plus and minus
structure functions of zeroth or
der. The inset corresponds to th
‘‘anomalous’’ region, where the
positive length becomes smalle
than the negative one. The trad
tional structure functionS0(r ) is
given in ~b!. It looks much
smoother. Inset~1! depicts rela-
tive asymmetry for small separa
tions and inset~2! shows im-
proved structure functions: the
solid line is for S80

1(r ) and the
dot-dashed line is forS80

2(r ).
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A correlation function of this process would behave li
that in Fig. 1~b!, which actually depicts the experiment
correlation function of the flow in a pipe. Indeed, the me
square of the deep minima essentially defines the maxim
of the correlation function, i.e.,K(0). Thewidth of these
deep pits defines the correlation length. Finally, posit
parts anticorrelate with minima and therefore correspond
the negative part of the correlation function, the extension
it roughly corresponding to the length of the positive parts
the process. Therefore, the correlation function of the
merical example in Fig. 1~a! would have a short correlatio
length and a wide negative part, i.e., anticorrelation, and
experimental correlation function looks the same.

We note, however, that this comparison is not unambi
ous. The point here is that it is possible to construct a p
Gaussian process, with the correlation function like that
picted in Fig. 1~b!. In fact, we did construct such a proce
numerically, and it is used below. We only claim that t
ramplike process in Fig. 1~a! would definitely have such a
correlation function.
m

e
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f
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The Kolmogorov law~11! implies that the third momen
is negative not only for smallest separationr5r 0 , but at any
scale in inertial range. This implies in turn that the incr
mentsv(x1r )2v(x) for a fixed r , not necessarily corre
sponding to the smallest separationr 0 , also look like those
depicted in Fig. 1~a!. In order to check this, we measure
S0

6(r ) structure functions for biggerr ’s. Note that the posi-
tive parts of this kind of distribution occupy more space th
the negative parts, as it can be clearly seen from Fig. 1~a!.
Obviously,S0

6(r ) simply represent the relative length of th
positive and negative parts or accelerated and deceler
lags of the ramp@9,6#. Figure 2~a! shows these two func
tions, and indeed the length of the positive parts is big
than that of the negative ones. Moreover, one can notice
mirror symmetry of these two curves: an increase of the p
tive length is accompanied by a decrease in the negative
and vice versa. Even when, as an exception, the pos
length becomes smaller than the negative~see the inset!, the
curves are still mirror symmetric. Of course, if, say, the po
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FIG. 3. Zeroth-order correla-
tions K0

1(r ) andK0
2(r ) are plot-

ted and compared with thei
Gaussian counterparts. The ins
gives their ratio.
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qs.
tive part occupies more space than ‘‘normal,’’ then it ha
pens only at the expense of the negative part; therefore,
sum, which is actually the traditional structure functio
S0(r ), is presented by a much smoother curve, which is
picted in Fig. 2~b! on the same scale range as the two in F
2~a!. In contrast, the relative asymmetry@S0

1(r )
2S0

2(r )#/S0
2(r ) changes dramatically and reaches ab

10% at small lags@see inset~1! to Fig. 2~b!#.
Another thing that emerges from Fig. 2~b! is that the ex-

perimental curve forS0(r ) is slightly below its theoretica
value~18!. Strictly speaking, the probability for the velocit
increment to be exactly zero is zero and hence the theore
valueS0(r.0)51. Due to the round-up errors, however, t
measurements do give some nonzero probability for ze
and thereforeS0(r.0)&1. Making use of this deviation
from unity, we are able to ‘‘improve’’ the plus and minu
structure functions. Namely, we divide the zeros into t
equal parts and attribute each of the parts to the positive
negative distributions. In other words, we introduce i
proved structure functionsS80

6(r ),

S08
6~0!50, S08

6~r.0!5S0
6~r.0!1

12S0~r.0!

2
,

so that their sum, that is, the improved structure funct
S08(r ), satisfies Eq.~18!. The improved structure function
look quite similar toS0

6(r ), except they are even more mi
ror symmetric, especially at small distances; see inset~2! in
Fig. 2~b!.

As suggested in@9# and observed in@6#, all negative mo-
ments of ordersq.1 are bigger than the positive momen
and vice versa forq,1 ~they coincide forq51 by defini-
tion!. Figure 2~a! shows that this rule is quite convincingl
confirmed forq50.
-
eir

-
.

t

al

s

nd
-

n

IV. ZEROTH-ORDER CORRELATIONS
AND BOX COUNTING

We study in this section the two distributionsD1(x) and
D2(x), defined in Sec. II. Experimental zeroth-order corr
lationsK0

1(r ) andK0
2(r ) are depicted in Fig. 3. These ar

compared with the Gaussian correlation, using Eq.~21!.
While the plus function is reasonably close to Gaussian,
negative is lower, by approximately 21%; see the inset to
figure. The difference is appreciable. Another thing th
emerges from Fig. 3 is that the negative moment is below
positive one, exactly as in Fig. 2~a!. That, as pointed out a
the end of the preceding section, is to be expected for
moments withq,1.

We proceed now to the box counting. Figure 4 shows
box counting for the positive and negative distributions.
mentioned at the end of Sec. II, it is difficult to use th
analytical expression forB0

6(r ) for a Gaussian process be
cause it is very complicated. We generated instead a Ga
ian process numerically~with 218 data points!, with a corre-
lation function similar to the experimental one. Of cours
positive and negative parts practically coincide for this p
cess and are presented as a dotted line in Fig. 4~a!. For r
51, the box counting simply corresponds to the mean of
number of filled boxes. The Gaussian process naturally
sults inB0

6(1)5 1
2.

Experimental measurements ofB0
1(1) give a slightly

smaller value, whileB0
2(1) is substantially less. Both th

positive and negative distributions deviate from the Gauss
distribution. More important is their deviation from eac
other. The inset shows their ratio reaches 10% above un
Note thatB0

1(r )/B0
2(r ).1 for all r , i.e., the negative mo-

ment is below the positive one, as is to be expected.
In spite of the fact that the deviation from the Gauss

distribution is not that dramatic, we attempted to search fo
scaling range, which proved to be for one decade@Fig. 4~b!#.
The real incentive for doing this was that, according to E
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~27! and ~28!, the process is quite intermittent, unlike,
course, the simulated Gaussian process.

The Kolmogorov capacities are then found from expr
sion ~19! with q50,

B0
1~r !;r 12D0

1

, B0
2~r !;r 12D0

2

, ~29!

@see also@11#, formula ~2.9!, and@9#, formula ~14!#.
The Kolmogorov capacities calculated for these proces

obey the inequality

Dq
2,Dq

1 , ~30!

suggested in@9#, and the difference between them is with
confidence limits; see Fig. 4~b!. Furthermore,if these two
curves possess any scaling at all, this inequality should be
satisfied. The point here is that the box counting for a
process is a monotonic function, asymptotically approach
unity for big boxes, that is, forr→`. Now, as mentioned
the negative counting is always below the positive, so t
the negative curve is inevitably steeper than the positive o
As a result, according to Eq.~29!, inequality~30! should be
satisfied.

V. ATTEMPT TO CONSTRUCT A PSEUDO-GAUSSIAN
FUNCTION OR SOME OTHER SIMPLE

ASYMMETRIC PDF

The simple expression for the generalized structure fu
tions ~7! appears because the multivariate Gaussian distr
tion depends on only one~functional! parameters(r ). In
other words,anyPDF that can be presented in the form

P~u,r !5
1

s~r !
P~y!, y5

u

s~r !
~31!

would result in this kind of expression. Indeed, it follow
from Eq. ~31! that

Sq~r !5F~q!s~r !q, ~32!

whereF(q)5*dyuyuqP(y): these are constants, so that t
r dependence coincides with Eq.~7! @12#.

If we suppose that, generally,P(y) is asymmetric and tha
*dy yP(y)50, then we recover the Kolmogorov hypothes
~13!. Indeed, in that case,

Ŝn~r !5F̂~n!s~r !n, ~33!

wheren is an integer andF̂(n)5*dy ynP(y). Because of
the asymmetry ofP(y), the odd moments do not vanis
~except for the first order!.

It is possible to make an even stronger statement abou
velocity increment PDF in the form~31!. It is known that
any random process can be unambiguously defined e
through the moments of arbitrary orders or through its P
@13#. Thus,assumingthe PDF in the form~31!, we recovered
the Kolmogorov hypotheses~12! and ~13! using Eqs.~32!
and ~33!. On the other hand, expressions~12! and ~13! are
valid for anyq and thereforeacceptingthe Kolmogorov hy-
potheses, we should be able to recover the velocity in
ment PDF. Now, knowing that the latter is unambiguou
-

es

y
g

t
e.

c-
u-

s

he

er
F

e-

defined by the moments, we are able to claim that Eq.~31! is
the only form for the PDF wheres(r )5(er )1/3 using ~12!.

Thus the PDF in the form~31! does recover the Kolmog
orov hypotheses. This simple picture breaks down, howe
when we develop it and when trying to fit experimental da
assuming some form of asymmetricP(y). We start, how-
ever, with a slightly more complicated PDF, that is, a tw
parameter distribution. Namely, let

P~u,r !5
a1

s~r !1 P1~y!, y5
u

s~r !1 for u>0

~34a!

and

P~u,r !5
a2

s~r !2 P2~y!, y5
u

s~r !2 for u,0.

~34b!

Then, from normalization

E P~u,r !du51,

it follows that

F2~0!a21F1~0!a151, ~35!

where

F6~n!5E
0

`

ynP6~y!dy.

Now,

^Dur&5E u P~u,r !du50,

that is,

F2~1!a2s2~r !5F1~1!a1s1~r !. ~36!

It is clear from Eq.~36! that the two functionss1(r ) and
s2(r ) actually coincide, within some coefficient constan
These constants can be included in the normalization co
cients, so that the PDF is not really two parameters.

To keep the PDF as close to the Gaussian form as p
sible, we suppose that

P2~y!5P1~y!5
1

A2p
e2y2/2, ~37!

i.e., both functions are Gaussian, although the argumenty is
defined differently in the positive and negative regions, us
Eq. ~34!. Then, asF1(0)5F2(0)5G(0)/25 1

2 for this case,
and introducing the asymmetry parameters512a1 ~i.e.,
a1512s!, we geta2511s and

s2~r !5~12s!s~r !, s1~r !5~11s!s~r !,

using Eq.~36!.
We are now in position to calculate the structure fun

tions, namely,
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FIG. 4. Box counting for the
velocity gradient. ~a! Positive
B0

1(r ) and negativeB0
2(r ) parts

of the distribution. For compari-
son, a numerically simulated
Gaussian process, with a correla
tion function similar to the experi-
mental one, is plotted. The inse
gives their ratio.~b! An attempt to
find a scaling and the correspond
ing Kolmogorov capacities.
a

,
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om

e
is

t for

not
aks
Ŝn~r !5Sn
11~21!nSn

2~r !

5
G~n!

2
s~r !n@~12s!~11s!n

1~21!n~11s!~12s!n# ~38!

for integern and

Sq~r !5Sq
11Sq

2~r !

5
G~q!

2
s~r !q@~12s!~11s!q1~11s!~12s!q# ~39!

for arbitraryq. As G(0)51, we recover Eq.~18! for n5q
50. Forn51, Eq. ~38! turns to zero, as it should.

For the symmetric distribution,s50 and all odd moments
for Ŝn(r ) vanish. The asymmetry parameters is analogous to
the skewness, except the former is bounded21,s,1. Ac-
cording to the Kolmogorov law, the third moment is neg
tive, which implies thats,0.

Clearly, the Kolmogorov hypotheses, both forSq(r ), with
exponents from Eq.~12!, and for the structure functions
with exponents from Eq.~13!, are recovered by using expre
sions~38! and ~39! if s(r );r 1/3 in inertial range.

The ratio of plus and minus parts can be obtained fr
Eq. ~38! or ~39!,
-

Sq
1~r !

Sq
2~r !

5
~12s!~11s!q

~11s!~12s!q
5S 11s

12sD
q21

. ~40!

As s,0, it follows from Eq.~40! thatSq
2(r ).Sq

1(r ) for q
.1 andSq

2(r ),Sq
1(r ) otherwise. This corresponds to th

experimental rule@6#, mentioned above. Thus, so far, th
asymmetric PDF works.

Furthermore, an expression like Eq.~40! can be obtained
not only for a pseudo-Gaussian PDF, as in this case, bu
any one-parameter distribution„only with different coeffi-
cients those in Eqs.~38! and~39!, instead ofG(q)…, provided
P2(y)5P1(y)5P(y), i.e., the first equality in Eq.~37! is
satisfied.

This requirement seems to be quite innocent, but it is
the case; it is at this point where the constructed PDF bre
down. Indeed, according Eqs.~34! and ~36!, in this case,

P~u,r !5
12s

~11s!s~r !
P~y!, y5

u

~11s!s~r !
for u>0,

~41a!

P~u,r !5
11s

~12s!s~r !
P~y!, y5

u

~12s!s~r !
for u,0,

~41b!

and there is a jump in the PDF atu50 ~i.e., y50!, from
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11s

~12s!s~r !
P~0!

to

12s

~11s!s~r !
P~0!

for any separationr . Furthermore, the jump increases f
smalls(r ), i.e., for small separationsr , and becomes big fo
small r ’s, however weak the asymmetry is~i.e., even for
infinitesimal smalls!. This has not been observed expe
mentally. In particular, for the data studied in this paper,
PDF is smooth at the origin~see Sec. VI!.

The only way to get rid of this discontinuity is to return
the PDF in the strictly one-parameter form~31!, with asym-
metric P(y). Then, using the previous denotation, the tw
functionsP6(y) simply correspond to the positive and neg
tive regions of argument for the functionP(y), i.e., P1(y)
5P(y>0) and P2(y)5P(y<0) @so that P1(0)
5P2(0)#.

The normalization results in

F2~0!1F1~0!51, ~42!

an analog of Eq.~35!, and the vanishing first moment lead
to the expression

F2~1!5F1~1!, ~43!

an analog of~36!. As above, we construct the expressions
the structure functions

Ŝn~r !5Sn
11~21!nSn

2~r !5s~r !n@F1~n!1~21!nF2~n!#

~44!

for integern @cf. Eq. ~38!# and

Sq~r !5Sq
11Sq

2~r !5s~r !q@F1~q!1F2~q!# ~45!

for arbitraryq @cf. Eq. ~39!#. Thus the Kolmogorov hypoth
eses are again recovered.

We see that

Sq
6~r !5s~r !qF6~q!. ~46!

Therefore, the ratio of positive and negative parts, analog
to Eq. ~40!, can be calculated,

Sq
1~r !

Sq
2~r !

5
F1~q!

F2~q!
. ~47!

Note that there exist functionsP6(y) that satisfy

F1~q,1!

F2~q,1!
.1,

F1~q.1!

F2~q.1!
,1,

F1~1!

F2~1!
51 ~48!

@cf. Eq. ~43!#. This ensures that the experimental rule@6# is
satisfied.

Up to this point, this asymmetric distribution work
However, it follows from Eq.~45! that, forq50,

S0
6~0!50, S0

6~r.0!5F6~0!5const, ~49!
e

-

r

us

in sharp contrast to the experiment: the functions are no
all constant; see Fig. 2. Moreover, as seen from Eq.~47!, the
ratio for anyq is a constant, again in sharp contrast w
direct measurements of these quantities~see Fig. 3 in@6#!.

In spite of these apparent discrepancies with experim
we will attempt to find theoretical possibilities for nea
Gaussian distributions. Note first that there is no way
make the functionP(y) in Eq. ~31! look Gaussian. If, say,
we write

P~y!5
1

A2ps~r !
e2~u2a!2/2s~r !2

in order to make it asymmetric, we find thata50, due to
requirement~43!. But then, the PDF is symmetric. Therefor
we return to the pseudo-Gaussian form~37! and ~41!.

The distribution~37! and~41! seems to be physically fea
sible. We study therefore the two-point PDF, which wou
result in this kind of distribution. Recall that the Gaussi
PDF for velocity increments~4! has been obtained from th
two-point distribution~2!, also Gaussian, of course. The la
ter can be naturally generalized to an asymmetric one to g
Eqs. ~37! and ~41!. Indeed, the distribution coincides wit
the Gaussian are with variances1(r ) for v.v8 and with
variances2(r ) otherwise, namely,

P2~u5v2v8.0, v8ur5x2x8!

5
12s

d2
1 expH 2

u2

2s1~r !2
2

~v81u/2!2

2@K~0!2s1~r !2/4#J
~50a!

and

P2~u5v2v8,0,v8ur5x2x8!

5
11s

d2
2 expH 2

u2

2s2~r !2

2
~v81u/2!2

2@K~0!2s2~r !2/4#J ,
~50b!

whered2
652ps6(r )@K(0)2s6(r )2/4#1/2. If r→2r , then

these two distributions exchange because the whole P
should be symmetric to thev→v8, x→x8 transformation.

Integrating Eq.~50! over all v8, we indeed recover Eqs
~37! and ~41!. Now, if we integrate the two-point PDF ove
u, we should recover the one-point Gaussian distribution
v8,

P1~v8!5
1

A2pK~0!
e2v82/2K~0!,

which indeed happens with the classical Gaussian distr
tion ~2!. But it is not the case for the quasi-Gaussian dist
bution ~50!. The integration results instead in

1

A2pK~0!
M ~v8,r !e2v82/2K~0!,
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where

M ~v8,r !5
1

A2p
H ~11s!E

2`

z2

e2x2/2dx1~12s!

3E
z1

`

e2x2/2dxJ ,
z65v8

s6~r !

2

1

$K~0!@K~0!2s6~r !2/4#%1/2
.

Of course, for the symmetric distribution,s50, z15z2, and
M51. Asymmetry results in a one-point distribution d
pending onr andv8, which does not make any sense at a
Thus the distribution~50! is not physically feasible.

VI. MEASUREMENTS OF THE PDF
FOR THE VELOCITY INCREMENTS

The two-point PDF’s are complicated to measure, but
PDF for the velocity increments is known relatively we
see, e.g.,@14#. These studies show that, first, although t
asymmetry is noticeable it is not very strong and, second,
PDF does not strongly deviate from the Gaussian form. T
happens because the PDF is known well for small and m
erate velocity increments. The intermittency effects
manifested mainly in the high-energy tails of the PDF; s
@11#, Sec. VII and Fig. 4 therein. But, in order to estimate t
tails, one usually tries to measure high moments~the higher
the better! and, as already mentioned in the Introduction, t
is not easy to perform because of poor convergence.

The deviation from the one-parameter form was alrea
seen from earlier experimental data@15#. The PDF is similar
to Eq. ~31!, but with the additional function

P~u,r !;
1

s~r !
e2uyum~r !

.

If m is a constant, then the PDF has one parameter. H
ever, the PDF has actually two parameters because the
ond functionm(r ) is involved. As claimed in@11#, it is be-
cause of this function that the multifractal structure
turbulence becomes possible.

As mentioned, the experimental PDF does not stron
deviate from the Gaussian distribution for small and mod
ate velocity increments. Moreover, a more or less arbitra
simple, and smooth function with a maximum at the orig
can be fitted to a Gaussian distribution. The question is, h
ever, if the latter corresponds to a two-point Gaussian dis
bution ~1!. As we saw in Sec. II, this would result in a on
parameter distribution for the velocity increments~4!. We
want to address an even more general question, that is, if
one-parameter functions for the velocity increments would
the experimental data. In Sec. V some indirect evidence
presented suggesting that the answer is negative.

Figure 5 presents direct measurements of the PD
These are constructed in dimensionless form, that is, the~di-
mensionless! probability function P„u/s(r )… is plotted
against normalized incrementsu/s(r ), where s(r )
5^Dv r

2&1/2, and for different point separationsr . If the dis-
tribution is Gaussian, then, according to Eq.~4!,
.
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P„u/s~r !…5P~y!5
1

A2p
e2y2/2. ~51!

Note that this function is independent ofr and is depicted as
a solid line in Figs. 5~a!–5~d!. The experimental PDF’s no
ticeably deviate from that curve. This deviation from th
Gaussian form was already seen in Fig. 1 of Casta
Gagne, and Hopfinger@14#.

More generally, the PDF can be non-Gaussian, but w
one parameter. In that case, it would be presented in the f
~31!, whereP(y) is some, generally asymmetric, functio
but still independent ofr . Figure 5 illustrates that the func
tion P„u/s(r )… definitely depends onr , which implies that
the PDF is not a one-parameter function. One trend is ind
noticeable: the decreasing maximum of the PDF with
creasingr , and, as a result, because of the normalization
the PDF, the increasing width withr . Only for substantially
big separations do the curves collapse to one, as seen
Fig. 5~d! @16#.

This trend is even more pronounced if we construct
distributionP„u/4s(r )…, where4s(r )5^Dv r

4/3&1/4; see Fig.
6 @for the Gaussian distributions54s(r ) becausêDv r

2&1/2

5^Dv r
4/3&1/4#.

In order to understand this trend and to make some qu
titative statements, we note that, of course, each PDF in F
5 and 6 can be fitted by a Gaussian distribution, althou
with variances2Þ1 ands4Þ1, in contrast to Eq.~51!. As a
matter of fact, according to Figs. 5 and 6, this variance i
function of r and alwayss2(r ),1 ands4,1 because all
experimental curves are narrower than the Gaussian
~51!. An example of such a fitting is given in Fig. 7~a! for
r51.27h. We may call this pseudo-Gaussian fit because
does not correspond to the multivariate Gaussian proces

Now, why might the velocity incrementv(x1r )2v(x)
statistics be expected to be Gaussian? Of course, if the
locity distribution is multi-Gaussian, then, as we saw in S
II, the PDF forv(x1r )2v(x) would be Gaussian as wel
More generally, if the one-point velocity distribution i
Gaussian, then the increment for large separationsr , present-
ing a sum of two independent processesv(x1r ) andv(x),
would be Gaussian as well. Figure 7~b! shows that experi-
mental one-point velocity distribution deviates from th
Gaussian one and again the PDF is narrower than the Ga
ian one. This explains why the velocity increment PDF’s f
large distances still deviate from the Gaussian ones@Figs.
5~d! and 6~d!#.

We return to the trend of increasings2,4 with growing
r . This can be understood if we suppose that the proces
intermittent, implying that the PDF has high-energy tai
see, e.g.,@11#, Sec. VII B. Indeed, the PDF’s in Figs. 5 and
cover the region up to three standard deviations, i.e., if
process is Gaussian, then that would cover 99.7% of eve
Thus the tails give rise to higher probability of the even
beyond 3s, which corresponds to intermittency. It is know
that the intermittency gives a relatively small impact in t
inertial range, becoming more important as the scaler de-
creases and being maximal in a viscous range. This expl
the trend in Figs. 5 and 6: the deviation from Gaussian d
tribution is more pronounced at small scales.
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FIG. 5. Probability density
P„u/s(r )… for different point
separationsr . Here u5Dv r and
s(r )5^Dv r

2&1/2. Each plot con-
tains a Gaussian distribution, de
picted with a solid line.
th
is
la
ha be

ore

w-
The trend itself is more noticeable in Fig. 6 because
PDF’s are normalized through higher moments, that
through the fourth moment, where the high-energy tails p
a more important role. To be more specific, note t
s2,4(r ) are defined as

s2~r !25

E
2cr

cr

u2P~uur !du

^Dv r
2&E

2cr

cr

P~uur !du

,

s4~r !45

E
2cr

cr

u4P~uur !du

^Dv r
4&E

2cr

cr

P~uur !du

, ~52!

where cr53s(r ) and obviouslys(r )25*2`
` u2P(uur )du.

The denominator can be written in the form
e
,
y
t

E
2cr

cr

P~uur !du512E
2`

2cr

P~uur !du2E
cr

`

P~uur !du.

Considering corrections to unity in this expression to
small, we write Eq.~52! in a different way,

s2,4~r !2512E
2`

2crS u2,4

^Dv r
2,4&

21DP~uur !du

2E
cr

`S u2,4

^Dv r
2,4&

21DP~uur !du. ~53!

The integrands in this expression are positive and theref

s2,4~r !,1,

which is indeed observed; see Figs. 7~c! and 8. It is also
obvious that the~negative! correction to unity in Eq.~53!
increases with growing energy in the tails, that is, with gro
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FIG. 6. Same as in Fig. 5, bu
with 4s(r )5^Dv r

4/3&1/4. Note
that the trend of increasing width
with growing r is more pro-
nounced here than in Fig. 5.
es
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ing P(uur ) for uuu.cr. More specifically, if P(uur ) for
uuu.cr53s(r ) is ~exponentially! small, then the correction
would be negligible. Furthermore, for the Gaussian proc
or, generally, for any one-parameter PDF, this correction
independent of distancer ~see Sec. V!. From Figs. 5 and 6
we see, however, that the width is minimal~i.e., this correc-
tion is maximal! at small scales, where intermittency is e
pected to dominate.

As mentioned, the tails in the PDF are responsible
intermittency. Traditionally, this is described by the interm
tency corrections to the Kolmogorov scaling, that is, the
ponentszq in Eq. ~8! are given in the form

zq5
q

3
2mq ,

wheremq are the intermittency correction; cf. Eq.~12!. Note
that mq,3,0 andmq.3.0. It follows from Eqs.~31! and
~32! that all intermittency correctionsmq vanish for the
s
is

r

-

Gaussian distribution or, generally, for the one-parame
distribution ~no tail!. Therefore, we may try to interpret th
scaling fors2,4(r )

2 as intermittency exponents. As a matt
of fact, the scaling for these quantities, extending for m
than two decades@Figs. 7~c! and 8#, is better if compared
with traditional measurements of the structure functions s
ing: the latter is often presented only by somewhat more t
one decade. It then follows from Figs. 7~c! and 8 thatm25
20.02860.001~m2520.033 from@4# andm2520.029 ac-
cording to@17#! andm450.08660.003~m450.133 from@4#
andm450.054 from@17#!.

We see that the scalings fors2,4(r ) correspond to the
intermittency exponents, obtained either from direct expe
mental measurements or from theoretical consideratio
they are in between these two. In spite of that, this interp
tation is not unambiguous because the analogy betw
s2,4 and the intermittency exponents is not straightforwa
In any case, ther dependence ofs2,4(r ) indicates a deviation
from the Gaussian process or, more generally, from the o
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FIG. 7. ~a! Pseudo-Gaussian fi
~dashed line! for the PDF withr
512.7h ands(r )5^Dv r

2&1/2. The
PDF itself is depicted with a dot-
ted line. ~b! One-point velocity
distribution ~dotted line!
P(v1 /sv), with v15v2^v& and
sv5^v1

2&1/2, compared with the
Gaussian~solid line!. ~c! Scaling
for s2(r )

2, that is, the effective
width of the PDF’s. It follows that
s2(r );r 0.014, which confirms
quantitatively the trend of the
widening of the PDF with grow-
ing r .
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parameter PDF. As mentioned above, this is an indicatio
intermittency, and the mere existence of the scaling, as s
from Figs. 7~c! and 8, suggests that the intermittency ma
fests itself in the inertial range.

VII. CONCLUSION

Although the measurements of high-order statistics p
vide direct evidence of intermittency, they have the dis
vantage of being of poor convergence. On the other ha
low-order moments provide good statistics. Therefore,
study of the low-order statistics of positive and negat
parts of the velocity increments might give some additio
insight into the understanding of intermittency.

It was shown in Secs. III and IV that structure and cor
lation functions of zeroth order for positive and negati
parts deviate from the Gaussian distribution. In particu
the box counting gives nontrivial Kolmogorov capacities f
these parts separately.

Recall that traditionally, the asymmetry of turbulence
attributed to the energy cascade in fully developed tur
of
en
-

-
-
d,
e

l

-

r,

-

lence @13#. It follows from the Navier-Stokes equation tha
the third moment does not vanish because it is respons
for the nonlinear interaction@3#; see Eq.~11!.

Note that the asymmetry is supposed to be noticea
Indeed, it is seen from the Kolmogorov law~11! that the
third moment is not small, i.e., there is no physical, sm
parameter in the asymmetry. Indeed, one cannot claim t
e.g.,

u^@v~x1r !2v~x!#3&u!^uv~x1r !2v~x!u3&

because, according to the law~11!, these quantities are of th
same order of magnitude.

Thus the third moment is asymmetric. Recent studies
vealed in addition that all moments, except for the first o
are asymmetric, in accordance with assumption~30!, relating
the asymmetry with intermittency@6#.

We claim in this paper that the Kolmogorov hypothes
are equivalent to the assumption that the PDF for the ve
ity increments is a one-parameter function. Indeed, in Sec
the Kolmogorov scaling~12! and ~13! is obtained from a
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FIG. 8. Scaling fors4(r )
4/3.

It is clear thats4(r );r 0.022. Thus
s4(r ) grows with r faster than
s2(r ); cf. the caption to Fig. 7~c!.
ne
of

n
yp

th
e

ea
rm
h
nc
et
a

If
nge
and

d

-
er

e at
nd
. I
and
one-parameter~in particular, Gaussian! PDF. One the other
hand, assuming Kolmogorov scaling, we recover the o
parameter PDF~31!; see Sec. V. In other words, this type
PDF corresponds to nonintermittent turbulence.

In Sec. V we saw, however, that it is impossible to co
struct a Gaussian-like distribution of the one-parameter t
~31! or in a slightly more complicated form~37! and~41!. In
addition, some evidence is given that, more generally,
one-parameter presentation of the PDF does not fit the
perimental data and the quasi-two-parameter form~34! re-
quires a jump in the PDF, which is never observed.

The experimental study of the PDF suggests that at l
the two-point distribution deviates from the Gaussian fo
and, more generally, from the one-parameter function. T
present study of the asymmetry gives additional evide
that the PDF is neither Gaussian nor of the one-param
type. This in turn suggests that the simple Kolmogorov sc
ia

S.

ro
R.
-

-
e

e
x-

st

e
e
er
l-

ing ~12! and ~13! is modified by intermittency exponents.
we suppose that any functional changes in the inertial ra
can be presented as power laws, then the PDF for plus
minus distributions are presented as powers;r hdh and the
exponentsjq

6 for the plus-minus distributions are obtaine
through the Legendre transform@11#. That returns us to the
ramp model@9#, with the main conclusion, namely, to in
equality ~30!. The experimental study reported in this pap
confirms this inequality.
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