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Non-Gaussian behavior of low-order moments in fully developed turbulence
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An experimental study is made of velocity increment statistics in turbulent pipe flow. Special attention is
given to positive and negative parts of the increments, corresponding to low-order-moment statistics. In
particular, we study the zeroth moment of both positive and negative parts of the distribution, i.e., the box
counting for each part separately: that makes it possible to calculate the Kolmogorov capacity. Low-order-
moment statistics corresponds to low and moderate velocity increments, which are described by a probability
density-function for, say, less than three standard deviations. The distributions prove to deviate noticeable from
Gaussian or from some other simple distribution. This implies a deviation from scaling law for the structure
functions, suggested by the Kolmogorov hypothef84063-651X97)01107-(

PACS numbds): 47.27.Ak, 47.27.Jv

[. INTRODUCTION the statistics of positive and negative parts of the velocity
increments and for low-order statistics. A comparison of
Statistical properties of turbulence have been studied for ¢hese predictions with experimental structure functions of ze-
long time. In particular, Kolmogorov suggested a scaling lawroth order is given in Sec. lll. Section IV deals with box
for structure functions, and that is now called K41 thedry ~ counting, or the Kolmogorov capacity, of positive and nega-
As it was understood later, the theory is valid for relativelytive parts of the velocity increments. Asymmetry proves to
simple statistics. Roughly speaking, the predicted scalingpe an obstacle for the construction of a PDF with all the
corresponds to a nonintermittent system, i.e., the probabilitjjeeded properties. For example, in Sec. V an attempt is made
distributions do not deviate strongly from the Gaussian dist0 construct a Gaussian-like PDF; this proves to be impos-
tribution. sible, at least for the simplest case. Probability distributions
On the other hand, intermittency of turbulence does corfor relatively low velocity increments, i.e., below three stan-
respond to a deviation from the Gaussian distribution. Indard deviations, are presented in Sec. VI. Finally, the main
deed, the refined Kolmogorov hypothe§2ksuggest that the conclusions are given in Sec. VII.
probability distribution differs from the Gaussian one.
Strictly speaking, the Kolmogorov layB], found in 1941,
implies that the probability distribution functioPDP is Il. MULTIVARIATE GAUSSIAN DISTRIBUTION
asymmetric and therefore cannot be Gaussian. However, this we will use the two-point Gaussian distribution, the prob-
deviation has been considered to be small. _ability density for the velocity to assume the valuesand
Naturally, the deviation from Gaussian statistics manifests,’  at the pointsx andx’,
itself mainly in high moments. Indeed, many studisse,
e.g.,[4,5]) show that if there is an anomalous scaling for the
structure functions, then it would be found in the high mo-P2(v,v'[X,x")
ments. The same is true for the generalized dimensips
corresponding togth moments. Experimental data persis- , ,
tently showed that the dimensions are trivial for the low :i exp[ _ K(0)v?~2K(rjvv' +K(0)v"2
moments; for instance, the Kolmogorov capadity=1 (if d> 2[K(0)*—K(r)?] '
dealing with a one-dimensional cut of a progeasd the
deviation from unity appears only in higher moments. where K(r) is an arbitrary velocity correlation functiom,
Recent studies, however, suggest that the deviation can.; v " and d —2a[K(0)2—K(r)2]¥2 For an n-point
already be found in the low momeri8]. This is especially PDE ’ 2 ' P
true if one considers positive and negative parts of the ve- ~ '
locity increments separately. They reveal aymmetryof
statistics. As the high moments usually have poor converp (v,,v,,...|X1,X,,...)
gence and they can be trusted, say, up to the sixth moment
only [7], it appears that the study of low moments statistics 1 L K(0)wi=2K(rij)viv;+K(0)v?
could prove to be useful. Low-order-moment-statistics corre-  ~ d, exp — ;J 2[K(0)2— K(rij)Z] '
sponds to the PDF, constructed for low and moderate veloc-
ity increments, and therefore the study of this kind of PDF
provides supplemental information about the deviation fromwhered,, is a normalization constant amg is the distance
the Gaussian process. between theth andjth points.
The rest of the paper is organized as follows. We describe We write Eqg.(1) in a different form, which more appro-
in Sec. Il what the Gaussian distribution would predict for priate for calculating the structure functions:

@
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| 1 p[ u? (v’ +uf2)? It follows that {3=1 andp= 3 from (9).
Po(v,v'[x,x")=—exp — 7 2 ) This scaling indeed corresponds to the Kolmogorov hy-
2 2[K(0)— 4
d o(7 2[K(0)=a(r)74] )  potheses K4{1],
3
where u=v—v’ and o(r)?=2[K(0)—K(r)]. The pre- Sq(r)~ (er)®”, (12

factor can be expressed through(r) as well, d, although they are usually written for the structure functions

— 2 1/2
=2mo(r)[K(0)o(r) /4] ' . . r]ather than for generalized structure functions, namely,
The structure functions are defined as integer moments o

the velocity increments, S, (r)~rén,
Sa(n) =([o(x+1)=v(x)]"=(A0}). (3  where
Therefore, integrating Eq2) over allv’, we get the PDF for
u, i.e., for the increments, &=73- (13
N 1 —2120(r)? As the structure functions coincide with the general structure
P(ulx,x")= 2mo(r) e : (4 functions for ever(intege) g, we simply havel = &, . In

addition, the expression for the structure function, with ex-
ponents like Eq(13), can be roughly used for the odd mo-
ments as well[except, of course, fog=1, becausguv(x
+r)—v(x))=0]. The point here is that Eq13) is satisfied
én(r)=G(n)a(r)“, (5)  for q=3 because of the Kolmogorov law and, according to
experimental dat§8,4(d)], the higher-order odd exponents
wheren=2m andG(n) is Gaussian constant. In particular, also roughly obey the Kolmogorov hypothe4&s).

Obviously, the odd moments vanisén(r)=0, n=2m
+1, mis an integer, and

G(2m)=(2m-1)1'=1X3---(2m—1). The mere existence of the Kolmogorov [4#1) and non-
More often, however, the so-called generalized structur&anishing odd moments means that the PDF is not Gaussian,
functions are used, but is asymmetric. We will be able to make more quantita-
tive statements by studying positive and negative parts of
Sy(N=(lv(x+r)=v(x)[, (6)  velocity increments. Namely, we consider, followif8j,
for arbitraryq. Then, using Eq4), for the Gaussian process, Sy (N=({3[1Av, ()] = Av (x)]}9). (14)
Sa(r)=G(a)o(r). (7)  Obviously,[|Av,(X)| = Av,(x)]/2 are non-negative and rep-

. . . - . resent positive parts adfv,(x) for the plus and the absolute
If, in addition, all structure functions exhibit scaling prop- | -, e of negative parts for the minus

erties, an assumption we are making in this paper, then the One of the quantities that measures the deviation from
generalized structure functions would behave like Gaussian process is the flatness factor

Sq(r)"-'r{q, (8) S4(|')
, . Far)=c 2- (15
which corresponds to the assumption thét) should scale Sy(r)
ke For the Gaussian proceds, is independent of and equal
a(r)~rP. to G(4)/G(2)?=3, by Eg. (7). Obviously, in that case,
S,(r)*=5,(r)/2, S4(r)*=S,(r)/2, and therefore
Under these assumptions, the Kolmogorov hypotheses can

be recovered for the generalized structure functions. Indeed, Fr_ Si(n) —6 (16)
using Eq.(7), LIsSmP T

{q=ap. C) Much attention will be devoted to extremely logy in

o ) ] ) particular,g=0. It easy to see from Ed4) that
There are two ways of finding. One is to consider dimen-
sional arguments, that is, to write the only dimensional com- . . 1
bination, as in1], S;(0)=0, S;(r#0)= > (17)

- 3

(|Av ) =Sy(r)~(er)*, (10) for the Gaussian process. Note that the theoretical values of

where € is the energy dissipation rate. In that capes 3. So(r) are
Another way, with the same result, is to notice teeri- Sy(0)=0, Sy(r>0)=1, (18)
mental closeness of the exponents 85(r) and Ss(r) [8]
and to invoke thet Kolmogorov law[3], which are valid not only for the Gaussian process, but for

R any PDF, unless it contain§ Av,).
Sy(r)=—ter. (11) The two distributions
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A*(x)=%[|Av,0(x)|+Av,0(x)] and Ka(r)=([A*(x+r)A*(x)]q’2> correlations. For the
Gaussian process, we have, tpr0,

and + _
KS(r)=Kg(r)=([A"(x+r)A"(x)]%

- 1
A7 (x) 2[|AU,Q(X)| Aer(X)] =<[A7(X+I’)A7(X)]O>
deserve special attention. Hatgcorresponds to the smallest w0 o
separation between two data points in any particular experi- =f dv'f dv Py(v,v'|X,x+T)
ment. The distributions correspond to the derivativex) 0 0
=d,v(x) or to the positive and negative parts of velocity o o 1 -
gradient distribution. To be more specifig(x)=A*(x) =f dxf dy =— e X*HY972) (20)
—A~(x) and|w(x)|=A(x)+A~(x). As the sets of non- o J T 2m
zero values ofA *(x) and A~ (x) do not intersect, all mo-

ments are constructed via the moments &f (x) and where
A~ (x) distributions. For example, the generalized dimen- K(r)
sionsD are obtained from the expression z=—X [K(0)2—K(r)q™2
N
Bqo(r)=(w(r)%)~r~(17Pa@ D1y~ (17Dg)la-1) After quite straightforward calculations, we get
+ r“c;‘, Ko (N =Kqy(r)= T(X+r)AT(x
Cyr @-Pg)@-1) (19 0 (N=Kg (r=([A~(x+r)A™(x)]%
where the angular brackets denote the global average over 11
the local mean, =275, arctafa(r)], (22)
K(r)
E wi(r)q a(r):
f K(0 Z_K r 21172
Forr=0, a— and the correlation§20) reach their maxi-
1 [x+r mum value (as they should for any correlation functjon
wi(r)= T J | 9,0 (X)|dx. equal to:. Forr—», a—0 and these correlations asymp-
Xi totically approach3. Finally, note that(|w(x+r)w(x)|%)

=1 for the Gaussiaand, practically, for any other continu-
ous distribution.

Return to the definition of generalized dimensions, as in
Eqg. (19). In particular, we are interested in box counting,
which gives a generalized dimension fipe= 0. Consider the

HereN=1/r is the number of boxes of sizeinto which the
volumeV=1 has been dividefl10,11. On the other hand,
wi(r)=A(r)+ A7 (r), where

1 (x+r
Af(r)=— f A(x)=dx, box counting for plus-minus distributions separately,
rJx namely,
and thus expressiofi9) is recovered9]. Be(r)=(A*(r)). (22)

As mentioned in the Introduction, the Kolmogorov capac-
ity Do=1 for turbulent processes. In fact, this is a conse-t is clear that for the Gaussian process, in fact, for any
quence of theontinuityof the velocity field, which in turnis  other, with a symmetric PDE
provided by a finite viscosity.

The situation is quite different witih *(x) and A~ (x) By (1)=3. (23)
distributions. They are discontinuous and therefore might be _ S
nontrivial. In addition to that, iD§ <1 or Dy <1, then all FOrr=ro=2, one has to consider the two-point distribution
higher-order dimensions are nontrivial. Indeed, according t¢1)- Then
the theorem[10], Dy-o<D,. Therefore, the Kolmogorov " .
capacity of plus-minus distributions might contain some Bé(ro)=1—f dv'f dv Py(v,0'|X,x+rg), (24)
deep properties of the asymmetry of turbulence. 0 0

Related properties might contain the two-point correla- )
tions such ag|w(x+r)w(x)|¥?) [11]. We are interested in and using Eqs(20) and (21),
lowest momeng=0. If v(x) is a Gaussian process then its 3 1
derivativew(x) is Gaussian as well. Then, to calculate these Bg (ro)=-— =— arctafia(ro)]. (25)
correlations, we use Ed1), with the correlation function 4 2m

corresponding tas(x), i.e., Thus expressions for box counting, if each box contains

K(r)=(o(x+1)o(x)), only two points, are expressed via finite integrals. Generally,
rather than to the velocity correlations. In particular, we are BX(r)=1— fmd fm
= v1| dvp-Py,
interested in constructind<, (r)=([A* (x+r)A*(x)]9?) o(" o tJo 2 "
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(a)

M M A

FIG. 1. lllustration of(a) an asymmetric ran-
dom process; the units are arbitrary, with a cor-
relation function similar to the experimental one,

T8V ' T L T depicted in(b). The latter corresponds ti§(r)
=(w(x+r)w(x)), wherew(x)=d,v(x), i.e., the
gradient of the measured velocity.
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wheren is chosen is such a way thatr,, andr, is the size Si(ro)
of the box. This expression is complicated and therefore not Fi(ro)= [Sz(r—)+]2:9'94 27
very useful. It is clear from it, though, that for a givéh,, 0

the result of box counting is unambiguously defined; if the

process is multivariate Gaussian, then the PDF itself is un@"d

ambiguously defined by a given correlation function. There-

fore, instead of using this complicated expression, we will _ S, (ro)

compare experimental box counting with that of the numeri- Fa(ro)= m =12.98. (28)
cally simulated Gaussian process; the correlation function

needed to define the process we take from experiment. These two values are bigger than the Gaussian ofiEq6

(16)], but the process is not Gaussian already, at least be-
. MEASUREMENTS OF THE STRUCTURE FUNCTIONS cause the regular flatness is higher thdiEg. (26)]. For any
OF ZEROTH ORDER symmetric PDF, not necessarily Gaussian, the values of flat-

All measurements reported in this paper were made in %1955 are expected to I5g = 2F4(ro) =11.82. We see that

pipe flow of water at a bulk Reynolds number equal tol e'plus distribution is less intermitt.ent, i.e_., t.he flatness fac-
230 000. The time sequence was treated as a spatial cut By IS 1ess than 11.82, and the minus distribution is more
invoking Taylor's hypothesis. The Taylor microscale was es/ntermittent £, >11.82). A weak deviation from the sym-
timated to be 0.88 cm and the Kolmogorov microscale wadnetry would resultin a small deviation of these two numbers
estimated asy=0.27 mm. Al distances in the figures are from 11.82. The differencd, (ro)—F; (ro) is, however,
given in terms Of?’] A data file with 2(106 points was about 26% of the Value, which is qu|te substantial.
processed. Figure Xa) illustrates a numerical example of such a pro-
We start with robust characteristics of the processCess. A realization of velocity increments at small tax

namely, experimental measurements of the flatness.rFor +ro) —v(X) or velocity gradientw(x) is plotted. The ex-
=1y, ample is constructed in such a way tHat)=0. It is clear

that(w3)<0, i.e., the skewness is negative. It is also obvious

F4(rg)=5.91, (26)  that the positive part ob is less intermittent than the nega-

tive one, i.e., the flatness of the negative part is bidgér
corresponding to moderate intermittency. Now, for the plusEgs. (27) and (28)]. This illustrates the ramp model sug-
minus distributions we have gested in9].
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A correlation function of this process would behave like The Kolmogorov law(11) implies that the third moment
that in Fig. 1b), which actually depicts the experimental is negative not only for smallest separatioar, but at any
correlation function of the flow in a pipe. Indeed, the meanscale in inertial range. This implies in turn that the incre-
square of the deep minima essentially defines the maximurmentsU(H r)—v(x) for a fixedr, not necessarily corre-
of the correlation function, i.eK(0). Thewidth of these sponding to the smallest separatian also look like those
deep pits defines the correlation length. Finally, positivegepicted in Fig. (a). In order to check this, we measured
parts anticorrelate with minima and therefore correspond t%g(r) structure functions for biggar's. Note that the posi-

the negative part of the correlation function, the extension OEive parts of this kind of distribution occupy more space than

it roughly corresponding to the length of the positive parts of; . .
the process. Therefore, the correlation function of the nu:[he negative parts, as it can be clearly seen from Fig. 1

merical example in Fig. (B would have a short correlation Ob\{igusly,Sg(r) simply represent the relative length of the
length and a wide negative part, i.e., anticorrelation, and th@0Sitive and negative parts or accelerated and decelerated
experimental correlation function looks the same. lags of the ramfl9,6]. Figure 2a) shows these two func-
We note, however, that this comparison is not unambigufions, and indeed the length of the positive parts is bigger
ous. The point here is that it is possible to construct a puréhan that of the negative ones. Moreover, one can notice the
Gaussian process, with the correlation function like that demirror symmetry of these two curves: an increase of the posi-
picted in Fig. 1b). In fact, we did construct such a process tive length is accompanied by a decrease in the negative lag
numerically, and it is used below. We only claim that theand vice versa. Even when, as an exception, the positive
ramplike process in Fig.(&) would definitely have such a length becomes smaller than the negatisee the insgt the
correlation function. curves are still mirror symmetric. Of course, if, say, the posi-
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tive part occupies more space than “normal,” then it hap- IV. ZEROTH-ORDER CORRELATIONS
pens only at the expense of the negative part; therefore, their AND BOX COUNTING

sum, WhICh is actually the traditional structure fungtlon We study in this section the two distributions” (x) and
Sy(r), is presented by a much smoother curve, which is de-

. S .. "A7(x), defined in Sec. Il. Experimental zeroth-order corre-
picted in Fig. Zb) on the same scale range as the two in Flg.I tionsK*(r) and K- (r) are depicted in Fia. 3. Th ;
2(@). In contrast, the relative asymmetry[Si(r)  onons o(r) andKq (r) are depicte g. 3. These are

- - . compared with the Gaussian correlation, using E2f).
=S5 (r)]/Sy (r) changes dramatically and reaches about,, . L ;
10% at small lag§see inset1) to Fig. 2b)]. R/\/h|le the plus function is reasonably close to Gaussian, the

. . . negative is lower, by approximately 21%; see the inset to the
Another thing that emer_ges.from Figi2 IS that the ex- figure. The difference is appreciable. Another thing that
perimental curve foiSy(r) is slightly below its theoretical

. / y " emerges from Fig. 3 is that the negative moment is below the
value (18). Strictly speaking, the probability for the velocity ositive one, exactly as in Fig(®. That, as pointed out at
increment to be exactly zero is zero and hence the theoretic%e end of t,he preceding section, is t(; be expected for all
valueSy(r>0)=1. Due to the round-up errors, however, the ’

do ai bability f moments withq<<1.
measurements do give some nonzero probability for Zeros \ye proceed now to the box counting. Figure 4 shows the

and thereforeSy(r>0)=1. Making use of this deviation 4y counting for the positive and negative distributions. As
from unity, we are able to “improve” the plus and minus mentioned at the end of Sec. II, it is difficult to use the
structure functlons._ Namely, we divide the zeros m_tp tWOanaIyticaI expression foB; (r) for a Gaussian process be-
equal parts and attribute each of the parts to the positive angh;se it is very complicated. We generated instead a Gauss-
negative distributions. In gther words, we introduce im-jgn process numericallwith 218 data points with a corre-
proved structure functionS'y (r), lation function similar to the experimental one. Of course,
positive and negative parts practically coincide for this pro-
cess and are presented as a dotted line in Fig. &orr
1—Sy(r>0) =1, the box counting simply corresponds to the mean of the
2 ' number of filled boxes. The Gaussian process naturally re-
sults inBg (1)=3.
Experimental measurements &; (1) give a slightly
so that their sum, that is, the improved structure functiorsmaller value, whileB, (1) is substantially less. Both the
So(r), satisfies Eq(18). The improved structure functions positive and negative distributions deviate from the Gaussian
look quite similar toS; (r), except they are even more mir- distribution. More important is their deviation from each
ror symmetric, especially at small distances; see if®ein  other. The inset shows their ratio reaches 10% above unity.
Fig. 2(b). Note thatB, (r)/B, (r)>1 for all r, i.e., the negative mo-
As suggested if9] and observed ifi6], all negative mo- ment is below the positive one, as is to be expected.
ments of ordergi>1 are bigger than the positive moments In spite of the fact that the deviation from the Gaussian
and vice versa fog<1 (they coincide forq=1 by defini-  distribution is not that dramatic, we attempted to search for a
tion). Figure 2a) shows that this rule is quite convincingly scaling range, which proved to be for one decgelg. 4(b)].
confirmed forq=0. The real incentive for doing this was that, according to Egs.

S47(0)=0, S, (r>0)=S5(r>0)+
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(27) and (28), the process is quite intermittent, unlike, of defined by the moments, we are able to claim that(Bd). is

course, the simulated Gaussian process. the only form for the PDF where(r) = (er)'® using (12).
The Kolmogorov capacities are then found from expres- Thus the PDF in the forni31) does recover the Kolmog-
sion (19) with g=0, orov hypotheses. This simple picture breaks down, however,
. - when we develop it and when trying to fit experimental data,
By (r)~rt=Po, By(r)~rtPo, (290  assuming some form of asymmetf(y). We start, how-
ever, with a slightly more complicated PDF, that is, a two-
[see alsd11], formula(2.9), and[9], formula(14)]. parameter distribution. Namely, let

The Kolmogorov capacities calculated for these processes
obey the inequality

a’ . u
i P(u,r)= o) P (y), y= o()° for u=0
D, <D, , (30 (343

suggested if9], and the difference between them is within and
confidence limits; see Fig.(d). Furthermore,f these two
curves possess any scaling at, ahis inequality should be P(u,r)= P(y), y= u
satisfied. The point here is that the box counting for any ' o(r)” ' o(r)”
process is a monotonic function, asymptotically approaching (34b
unity for big boxes, that is, for—. Now, as mentioned, o

the negative counting is always below the positive, so thaf "en, from normalization

the negative curve is inevitably steeper than the positive one.

As a result, according to E¢29), inequality (30) should be f P(u,r)du=1,

satisfied.

for u<o.

it follows that
V. ATTEMPT TO CONSTRUCT A PSEUDO-GAUSSIAN

FUNCTION OR SOME OTHER SIMPLE F-(0)a +F*(0)a"=1, (35)
ASYMMETRIC PDF

: . ) where
The simple expression for the generalized structure func-

tions (7) appears because the multivariate Gaussian distribu- . .
tion depends on only oné&unctiona) parametero(r). In F_(n):fo y"P=(y)dy.
other wordsany PDF that can be presented in the form

1 u Now,
Pur=—=P(y), y=—= (31
o(r) o(r) <Aur):f u P(u,r)du=0,
would result in this kind of expression. Indeed, it follows
from Eq. (31) that that is,
Sy(r)=F(q)a(r)9, (32 F (a o (r)=F"(La*o*(r). (36)

whereF(q) = fdy|y|9P(y): these are constants, so that thelt is clear from Eq.(36) that the two functionsr*(r) and
r dependence coincides with EJ) [12]. o~ (r) actually coincide, within some coefficient constants.
If we suppose that, generallp(y) is asymmetric and that These constants can be included in the normalization coeffi-
fdy yP(y)=0, then we recover the Kolmogorov hypothesescients, so that the PDF is not really two parameters.
(13). Indeed, in that case, To keep the PDF as close to the Gaussian form as pos-
sible, we suppose that

Sy(r)=F(n)a(r)", (33
- - 1 v
wheren is an integer and-(n)= fdy y,P(y). Because of P (y)=P"(y)= T e v’ (37)
the asymmetry ofP(y), the odd moments do not vanish
(except for the first order i.e., both functions are Gaussian, although the argumést

Itis possible to make an even stronger statement about thgsfined differently in the positive and negative regions, using
velocity increment PDF in the forn@1). It is known that g (34). Then, a*(0)=F ~(0)=G(0)/2=} for this case,
any random process can be unambiguously defined eithjng introducing the asymmetry parameterl—a™ (i.e.,
through the moments of arbitrary orders or through its PDRy+— 1 _g) we geta =1+s and
[13]. Thus,assuminghe PDF in the forn{31), we recovered
the Kolmogorov hypothesed?2) and (13) using Egs.(32) o (r)=(1-s)o(r), o' (r)=(1+s)a(r),
and (33). On the other hand, expressiofi) and (13) are
valid for anyq and thereforeacceptingthe Kolmogorov hy-  using Eq.(36).
potheses, we should be able to recover the velocity incre- We are now in position to calculate the structure func-
ment PDF. Now, knowing that the latter is unambiguouslytions, namely,
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Su(r)=S; +(-1)"S; (1) Se(r)  (1-s)(1+s) (1+s a-1 .
G(n) Sy(r) (1+s)(1-9)7 |1-s
=—o(N(1-s)(1+s)"
As s<0, it follows from Eq.(40) that S;(r)>S;“(r) for g
+(=D"(1+s)(1-9)"] (38)  >1 andS;(r)<S;(r) otherwise. This corresponds to the
experimental rulg6], mentioned above. Thus, so far, this
for integern and asymmetric PDF works.
Furthermore, an expression like E40) can be obtained
L not only for a pseudo-Gaussian PDF, as in this case, but for
Sy(r) =S4 +5;(r) any one-parameter distributiofonly with different coeffi-
G(q) cients those in Eq$38) and(39), instead 0fG(q)), provided
= o(NI(1—s)(1+5)%+(1+s)(1—9)9] (39 P (y)=P*(y)=P(y), i.e., the first equality in Eq(37) is

for arbitraryg. As G(0)=1, we recover Eq(18) for n=q
=0. Forn=1, Eq.(38) turns to zero, as it should.

satisfied.

This requirement seems to be quite innocent, but it is not
the case; it is at this point where the constructed PDF breaks
down. Indeed, according Eq&4) and(36), in this case,

For the symmetric distributiors=0 and all odd moments

for S,(r) vanish. The asymmetry parameseis analogous to 1-s
the skewness, except the former is boundetk<s<<1. Ac-
cording to the Kolmogorov law, the third moment is nega-

tive, which implies thas<0.
Clearly, the Kolmogorov hypotheses, both &(r), with

exponents from Eq(12), and for the structure functions,
with exponents from Eq13), are recovered by using expres-

sions(38) and(39) if o(r)~rY?in inertial range.

u
P(u,r)=m P(y), yzm for u=0,
(413

_ 1+s B u
P(u,r)—mP(y), y—m for u<o,
(41b)

The ratio of plus and minus parts can be obtained from

Eq. (38) or (39),

and there is a jump in the PDF at=0 (i.e., y=0), from
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1+s in sharp contrast to the experiment: the functions are not at
a=9)o(n) P(0) all constant; see Fig. 2. Moreover, as seen from(&d), the
ratio for anyq is a constant, again in sharp contrast with
to direct measurements of these quantifiese Fig. 3 in6]).
In spite of these apparent discrepancies with experiment,
1-s we will attempt to find theoretical possibilities for near-
(1+s)o(r) P(0) Gaussian distributions. Note first that there is no way to

make the functiorP(y) in Eq. (31) look Gaussian. If, say,
for any separationr. Furthermore, the jump increases for we write
smalla(r), i.e., for small separationrs and becomes big for

small r's, however weak the asymmetry {ge., even for 1 —(u=2)2120(r)2

infinitesimal smalls). This has not been observed experi- P(y)= \/ﬂa(r) e

mentally. In particular, for the data studied in this paper, the

PDF is smooth at the origisee Sec. VL in order to make it asymmetric, we find that=0, due to

The only way to get rid of this discontinuity is to return to requirement43). But then, the PDF is symmetric. Therefore,
the PDF in the strictly one-parameter fol®1), with asym- e return to the pseudo-Gaussian fof@7) and (41).
metric P(y). Then, using the previous denotation, the two  The distribution(37) and(41) seems to be physically fea-
functionsP~(y) simply correspond to the positive and nega-siple. We study therefore the two-point PDF, which would
tive regions of argument for the functid(y), i.e., P*(y)  result in this kind of distribution. Recall that the Gaussian
=P(y=0) and P (y)=P(y<0) [so that P"(0)  PDF for velocity increment{4) has been obtained from the

=P~ (@) _ two-point distribution(2), also Gaussian, of course. The lat-
The normalization results in ter can be naturally generalized to an asymmetric one to give
_ Egs. (37) and (41). Indeed, the distribution coincides with
+ —
F(O+F(0)=1, (42) the Gaussian are with varianeg™(r) for v>v’ and with

an analog of Eq(35), and the vanishing first moment leads Variances  (r) otherwise, namely,

to the expression P(u=v—0'>0,0'[r=x—x')

F7(1)=F"(1), (43 1-s p[ u? (v' +ul2)? ]

an analog of36). As above, we construct the expressions for dy 207 (r)? 2[K(0)—a"(r)%/4]
the structure functions
(509
Si(N =S +(—1)"S, (N=a()"[F*(N+(-L"F (W]  and
(44)

) Py(u=v—v'<0p’'|r=x—x")
for integern [cf. Eqg. (38)] and

1+s u?
Sy(N=8; +S;(N=0(NYF () +F (q)] (45 T4, &P T 25 (r)?
for arbitraryq [cf. Eq. (39)]. Thus the Kolmogorov hypoth- (v’ +ul2)? ]
eses are again recovered. - — 20
We see that 2[K(0) =0 (r)“/4]
+ . (50b)
Sq (N =a(r)F=(q). (46)

whered; =27a~ (r)[K(0)— o™ (r)%4]Y2 If r——r, then
Therefore, the ratio of positive and negative parts, analogougese two distributions exchange because the whole PDF
to Eq. (40), can be calculated, should be symmetric to the—v', x—x’ transformation.
N . Integrating Eq.(50) over allv’, we indeed recover Egs.
Sq(r) _F7(a) (37) and (41). Now, if we integrate the two-point PDF over

Sq(r) F (o)’ “7 u, we should recover the one-point Gaussian distribution for
v',
Note that there exist functiorB=(y) that satisfy
1 12
F'(q<1) F (g>1) F*(1) Py(v')= ——— e v 212K(0),
F<n) " Feen - Fa bt “ V27K(0)

which indeed happens with the classical Gaussian distribu-
tion (2). But it is not the case for the quasi-Gaussian distri-
bution (50). The integration results instead in

[cf. Eq. (43)]. This ensures that the experimental r[fg is
satisfied.
Up to this point, this asymmetric distribution works.

However, it follows from Eq(45) that, forq=0, 1

Sy (0)=0, Sy(r>0)=F*(0)=const, (49) J27K(0)

M(U,,r)e—u’zlzK(O),
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where

1 2
Pu/o(r))=P(y)= — e Y72 (51)
. o Wla(r)=P(y)=
M(U’,r)z\/? (1+s)f e X2dx+(1—s)
e — o0
v, Note that this function is independentofind is depicted as
Xf e /ZdX], a solid line in Figs. B8)—5(d). The experimental PDF's no-
z ticeably deviate from that curve. This deviation from the

Gaussian form was already seen in Fig. 1 of Castaing,
_ . Gagne, and Hopfingdd.4].
2 {K(0)[K(0)— o~ (r)%/4]}"* More generally, the PDF can be non-Gaussian, but with
. . one parameter. In that case, it would be presented in the form
Of course, for the symmetric dlSthbUtIOﬂf 0, z' =1 ,_and (31), whereP(y) is some, generally asymmetric, function,
M=1. Asymmetry’ resglts in a one-point distribution de-, ;i o independent of . Figure 5 illustrates that the func-
pending o apdv_ ’ Wh'(f\h does hot make any sense at all-fion P(u/o(r)) definitely depends on, which implies that
Thus the distributior(50) is not physically feasible. the PDF is not a one-parameter function. One trend is indeed
noticeable: the decreasing maximum of the PDF with in-
VI. MEASUREMENTS OF THE PDF creasingr, and, as a result, because of the normalization of
FOR THE VELOCITY INCREMENTS the PDF, the increasing width with Only for substantially
JHig separations do the curves collapse to one, as seen from

The two-point PDF’s are complicated to measure, but th
PDF for the velocity increments is known relatively well; Fig. 5_(d) [16]. . .
see, e.g.[14]. These studies show that, first, although the 1his trend IS even more pr40n0unced Q‘W?Mconstrupt the
asymmetry is noticeable it is not very strong and, second, thistribution P(u/"o(r)), where“o(r)=(Av,/3)™" see2F|g.
PDF does not strongly deviate from the Gaussian form. Thi§ [for the Gaussian distribution="“o(r) becausgAuvy)*?
happens because the PDF is known well for small and mod?(Avf/3>ll4]-
erate velocity increments. The intermittency effects are In order to understand this trend and to make some quan-
manifested mainly in the high-energy tails of the PDF; seditative statements, we note that, of course, each PDF in Figs.
[11], Sec. VIl and Fig. 4 therein. But, in order to estimate the5 and 6 can be fitted by a Gaussian distribution, although
tails, one usually tries to measure high momditie higher  with variances,# 1 ando,# 1, in contrast to Eq(51). As a
the bettey and, as already mentioned in the Introduction, thismatter of fact, according to Figs. 5 and 6, this variance is a
is not easy to perform because of poor convergence. function of r and alwayso,(r)<1 ando,<1 because all

The deviation from the one-parameter form was alreadyexperimental curves are narrower than the Gaussian one
seen from earlier experimental d4fs]. The PDF is similar  (51). An example of such a fitting is given in Fig(&J for
to Eq. (31), but with the additional function r=1.275. We may call this pseudo-Gaussian fit because it

does not correspond to the multivariate Gaussian process.
P(u r)NL oy Now, why might the velocity incremeni(x-+r)—uv(x)
! a(r) ) statistics be expected to be Gaussian? Of course, if the ve-
locity distribution is multi-Gaussian, then, as we saw in Sec.
If mis a constant, then the PDF has one parameter. Howd, the PDF forv(x+r)—uv(x) would be Gaussian as well.
ever, the PDF has actually two parameters because the sddore generally, if the one-point velocity distribution is
ond functionm(r) is involved. As claimed if11], it is be-  Gaussian, then the increment for large separatippsesent-
cause of this function that the multifractal structure ofing a sum of two independent process¢s+r) anduv(x),
turbulence becomes possible. would be Gaussian as well. FigurébY shows that experi-

As mentioned, the experimental PDF does not stronglymental one-point velocity distribution deviates from the
deviate from the Gaussian distribution for small and moderGaussian one and again the PDF is narrower than the Gauss-
ate velocity increments. Moreover, a more or less arbitraryian one. This explains why the velocity increment PDF’s for
simple, and smooth function with a maximum at the originlarge distances still deviate from the Gaussian drtggs.
can be fitted to a Gaussian distribution. The question is, hows(d) and &d)].
ever, if the latter corresponds to a two-point Gaussian distri- We return to the trend of increasing, 4 with growing
bution (1). As we saw in Sec. I, this would result in a one- r. This can be understood if we suppose that the process is
parameter distribution for the velocity incremeri#y. We  intermittent, implying that the PDF has high-energy tails;
want to address an even more general question, that is, if argee, e.g[11], Sec. VII B. Indeed, the PDF’s in Figs. 5 and 6
one-parameter functions for the velocity increments would fitcover the region up to three standard deviations, i.e., if the
the experimental data. In Sec. V some indirect evidence wagrocess is Gaussian, then that would cover 99.7% of events.
presented suggesting that the answer is negative. Thus the tails give rise to higher probability of the events

Figure 5 presents direct measurements of the PDF'sheyond 3, which corresponds to intermittency. It is known
These are constructed in dimensionless form, that is(dile  that the intermittency gives a relatively small impact in the
mensionless probability function P(u/a(r)) is plotted inertial range, becoming more important as the scatie-
against normalized incrementsi/o(r), where o(r) creases and being maximal in a viscous range. This explains
=(Av?)*2 and for different point separatioms If the dis-  the trend in Figs. 5 and 6: the deviation from Gaussian dis-
tribution is Gaussian, then, according to E4), tribution is more pronounced at small scales.
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The trend itself is more noticeable in Fig. 6 because the cr —cr E
PDF's are normalized through higher moments, that is, J P(u|r)du=1—f P(u|r)du—f P(ulr)du.
through the fourth moment, where the high-energy tails play =~ " °f
a more important role. To be more specific, note tha
0,4r) are defined as

tConsidering corrections to unity in this expression to be
small, we write Eq(52) in a different way,

cr
u?P(ulr)du —cr 24
2 f‘” (i 02,4(|')2:1—f A—2’4>_1 P(u|r)du
UZ(r) = or y — < Uy
(Avf}f P(u|r)du Y
- — | |——1]|P(u|r)du. 53
fcr((Avrz'4> ( | ) ( )
ffc, u*P(ulr)du The integrands in this expression are positive and therefore
oa(r)?= = : (52
<AU?>J P(ulr)du oa41)<1,
—Cr

which is indeed observed; see Fig¢c)7and 8. It is also
where cr=30(r) and obviouslyo(r)?=f”_u?P(u|r)du.  obvious that thenegativeé correction to unity in Eq(53)
The denominator can be written in the form increases with growing energy in the tails, that is, with grow-
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ing P(ulr) for |u/>cr. More specifically, if P(u|r) for  Gaussian distribution or, generally, for the one-parameter
|u|>cr=30a(r) is (exponentially small, then the correction distribution (no tail). Therefore, we may try to interpret the
would be negligible. Furthermore, for the Gaussian processcaling foro, ,(r)? as intermittency exponents. As a matter
or, generally, for any one-parameter PDF, this correction isf fact, the scaling for these quantities, extending for more
independent of distance (see Sec. Y. From Figs. 5 and 6 than two decadefFigs. 7c) and §, is better if compared
we see, however, that the width is minin{aé., this correc-  wjth traditional measurements of the structure functions scal-
tion is maximal at small scales, where intermittency is ex- ing: the latter is often presented only by somewhat more than
pected to dominate. one decade. It then follows from Figs(cY and 8 thatu,=

As mentioned, the tails in the PDF are responsible for— g g2+ 0.001(u,=—0.033 from[4] and u,= — 0.029 ac-

intermittency. Traditionally, this is described by the intermit- cording to[17]) and u,=0.086+ 0.003(u,= 0.133 from[4]
tency corrections to the Kolmogorov scaling, that is, the ex-and 1,,=0.054 from[17]).

ponents{, in Eq. (8) are given in the form We see that the scalings far, (r) correspond to the
intermittency exponents, obtained either from direct experi-
¢ _a mental measurements or from theoretical considerations:
a= 3" Ma they are in between these two. In spite of that, this interpre-

tation is not unambiguous because the analogy between
whereu, are the intermittency correction; cf. E42). Note 0,4 and the intermittency exponents is not straightforward.
that uq-3<0 and uy~3>0. It follows from Egs.(31) and  In any case, the dependence af; ,(r) indicates a deviation
(32 that all intermittency correctiong., vanish for the from the Gaussian process or, more generally, from the one-
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parameter PDF. As mentioned above, this is an indication ofence[13]. It follows from the Navier-Stokes equation that

intermittency, and the mere existence of the scaling, as seahe third moment does not vanish because it is responsible

from Figs. 71c) and 8, suggests that the intermittency mani-for the nonlinear interactiof3]; see Eq.(11).

fests itself in the inertial range. Note that the asymmetry is supposed to be noticeable.

Indeed, it is seen from the Kolmogorov la@@l) that the

third moment is not small, i.e., there is no physical, small

parameter in the asymmetry. Indeed, one cannot claim that,
Although the measurements of high-order statistics pro®-9-

vide direct evidence of intermittency, they have the disad-

vantage of being of poor convergence. On the other hand, Klo(x+1) —v(x) ) <(Jo(x+r) —v(x)]?)

low-order moments provide good statistics. Therefore, the

study of the low-order statistics of positive and negativebecause, according to the lgil), these quantities are of the

parts of the velocity increments might give some additionalsame order of magnitude.

insight into the understanding of intermittency. Thus the third moment is asymmetric. Recent studies re-
It was shown in Secs. Il and IV that structure and corre-vealed in addition that all moments, except for the first one,

lation functions of zeroth order for positive and negativeare asymmetric, in accordance with assumpt®g), relating

parts deviate from the Gaussian distribution. In particularthe asymmetry with intermittend].

the box counting gives nontrivial Kolmogorov capacities for We claim in this paper that the Kolmogorov hypotheses

these parts separately. are equivalent to the assumption that the PDF for the veloc-
Recall that traditionally, the asymmetry of turbulence isity increments is a one-parameter function. Indeed, in Sec. I,

attributed to the energy cascade in fully developed turbuthe Kolmogorov scaling12) and (13) is obtained from a

VII. CONCLUSION
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one-paramete(in particular, GaussignPDF. One the other ing (12) and(13) is modified by intermittency exponents. If
hand, assuming Kolmogorov scaling, we recover the onewe suppose that any functional changes in the inertial range
parameter PDE31); see Sec. V. In other words, this type of can be presented as power laws, then the PDF for plus and
PDF corresponds to nonintermittent turbulence. minus distributions are presented as powers'dh and the

In Sec. V we saw, however, that it is impossible to con—exponents§§ for the plus-minus distributions are obtained
struct a Gaussian-like distribution of the one-parameter typehrough the Legendre transforiil]. That returns us to the
(31 or in a slightly more complicated forit87) and(41). In  ramp model[9], with the main conclusion, namely, to in-
addition, some evidence is given that, more generally, thequality (30). The experimental study reported in this paper
one-parameter presentation of the PDF does not fit the exonfirms this inequality.
perimental data and the quasi-two-parameter f¢84) re-
quires a jump in the PDF, which is never observed. ACKNOWLEDGMENTS
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